Sonodynamically induced cell damage using rose bengal derivative.

نویسندگان

  • Nami Sugita
  • Yumiko Iwase
  • Nagahiko Yumita
  • Toshihiko Ikeda
  • Shin-Ichiro Umemura
چکیده

AIM The ultrasonically induced effect of a tumor accumulative derivative of rose bengal (RB) on isolated tumor cells was investigated to clarify whether the RB derivative (RBD) maintains the sonosensitizing ability of RB. MATERIALS AND METHODS Sarcoma 180 cells were suspended in air-saturated phosphate-buffered saline and were exposed to ultrasound in standing wave mode for up to 60 s in the presence and absence of RBD or RB. The viability of the cells was determined by the ability to exclude trypan blue. RESULTS The ultrasonically induced cell-damaging rate with 100 μM RBD was one order of magnitude higher than that with the same concentration of RB. This increase was significantly inhibited by the active oxygen scavengers histidine, tryptophan and N-acetyl-L-cysteine. CONCLUSION Chemical modification of RB to RBD for tumor accumulation significantly increased the sonodynamically induced antitumor effect of RB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

بررسی تأثیر ضدّ‌ التهابی رزبنگال در ماکروفاژهای فعال‌شده با لیپو‌پلی‌ساکارید در غیاب نور

Background and Aim: Rose Bengal is a water-soluble, anionic xanthin dye. It has been used as a safe compound for many years. But, anti-inflammatory effect of Rose Bengal has not been studied. The aim of this study was to determine the effect of Rose Bengal on nitric oxide production and its inflammatory induced response and inducible nitric oxide synthase expression in LPS-activated J774A.1 mac...

متن کامل

Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells.

PURPOSE The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS BCEN cells in primary culture ...

متن کامل

Optical properties and switching of a Rose Bengal derivative: A spectroscopic ellipsometry study

Optical properties in terms of the complex-valued dielectric function were determined for spin-coated films of a Rose Bengal derivative using variable angle of incidence spectroscopic ellipsometry in the visible and infrared wavelength regions. In addition, the thickness and roughness of the films were determined and related to the solution concentration of Rose Bengal. Switching between two di...

متن کامل

Involvement of Reactive Oxygen Species in Sonodynamically Induced Apoptosis Using a Novel Porphyrin Derivative

In this study, we investigated the induction of apoptosis by ultrasound in the presence of the novel porphyrin derivative DCPH-P-Na(I). HL-60 cells were exposed to ultrasound for up to 3 min in the presence and absence of DCPH-P-Na(I), and the induction of apoptosis was examined by analyzing cell morphology, DNA fragmentation, and caspase-3 activity. Reactive oxygen species were measured by mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anticancer research

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2010